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Abstract

In the classical approach of determining the stresses and displacements due to a centrifugal force in rotating disks,

the inertia force considered does not include the radial displacement thus yielding stable solutions. Inclusion of the

displacement in the centrifugal force results in instability at certain rotational speeds. The present study addresses the

problem of instability in rotating polar-orthotropic disks. Following a brief outline of the classical analysis, the stress

redistribution solutions are presented. The solutions are obtained in terms of non-dimensional parameters. The pa-

rameter de®ned as the ratio of circumferential sti�ness to radial sti�ness has been found to have the most considerable

e�ect on the critical rotational speed. Various cases are considered, and the corresponding critical rotational parameters

are presented in tables. The comparison of stresses obtained from the classical approach with the redistributed stresses

is displayed graphically. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The existence of a static inertio-elastic instability of rotating isotropic disks has been ®rst noticed by
Brunelle (1971). The problem of instability is not crucial for rotating structural elements made of usual
metals, but it is of primary importance in rotating structures made of low modulus, high yield strength
materials. Polymeric materials which may display anisotropic properties are examples of such materials.

Theoretical modeling of the stress distribution available in the literature due to centrifugal forces in
rotating plates includes planar elasticity and laminated plate theories. Studies by Bert and Niedenfuhr
(1963), Reddy and Srinath (1973), Chang (1975) and Genta and Gola (1981) dealt with determining stresses
via an elasticity approach in orthotropic single-ply circular plates with the outer boundary free of any
constraints. Bert (1975) used a laminated plate theory on layered plates of rectangular anisotropy with
extension-bending coupling and with stress-free boundaries by which approximate solutions were obtained.
Christensen and Wu (1977) determined the optimal shapes of orthotropic ¯ywheels using a uniform strain
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failure criterion. Uniform strain meant variable thickness along the radial direction. Tutuncu (1995) ex-
amined the e�ect of anisotropy on the centrifugal stress distribution in laminated rotating disks for various
outer boundary conditions. The laminates considered were specially orthotropic. When the rotating plate is
restrained at the outer edge, compressive stresses begin to occur near the outer boundary. If the rotational
speed reaches a critical value, these stresses will cause local buckling. This problem was addressed by
Mostaghel and Tadjbakhsh (1973) for the isotropic case and by Tutuncu and Durdu (1998) for the specially
orthotropic case.

In all the works cited above, which will be termed as the classical approach from here on, the centrifugal
force has been assumed to be qx2 r, where q is the mass per unit area, x is the rotational speed and r is the
radial coordinate. The classical approach does not predict any instability so long as the circular plate
rotates freely without any constraint along its outer boundary. However, including the actual centrifugal
force qx2�r � u� where u is the radial displacement, results in a stress redistribution along the radius and
predicts instability at a critical value of x. The analysis along with a comparison with the results of the
classical approach is given in the following sections.

The rotating composite disk in question displays polar orthotropic material characteristics. Polar or-
thotropy is achieved when the polar coordinate axes are also the axes of material symmetry. The freely
rotating plate is either a full plate or is ®xed to a rigid shaft of radius a.

2. Classical approach

Consider a circular plate of radius R and uniform thickness h which is rotating with the angular speed x
about an axis perpendicular to its plane. Assuming steady rotation, symmetric deformation, and no
bending, displacement ®eld takes the form

u � u�r�; v � v�h� � 0; w � w�r� � 0: �1�
From here on, u and r will denote the non-dimensional quantities de®ned as u=R and r=R. Because of the
axisymmetry of the problem, all the stress and strain components are independent of the h coordinate. The
in-plane strain components are

er � du
dr
; eh � u

r
; crh � 0: �2�

Constitutive equations for the specially orthotropic plate take the following form:

Nr

Nh

Nrh

8<:
9=; � A11 A12 0

A12 A22 0
0 0 A66

24 35 er

eh

0

8<:
9=;; �3�

where Nr and Nh are, respectively, the stresses in the r and h directions. Subscripts 1 and 2 refer, respectively,
to the r and h directions.

The only non-trivial equilibrium equation is in the radial direction

dNr

dr
� Nr ÿ Nh

r
� qx2r � 0: �4�

Substituting Eq. (2) into Eq. (3) and thus obtaining expressions for Nr and Nh in terms of sti�ness and radial
displacement, the equilibrium equation can be used to derive the governing equation of radial displacement
as

r2u00 � ru0 ÿ k2u � ÿX2r3; �5�
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where k2 � A22=A11; X2 � qx2R3=A11; r � r=R; u � u=R as de®ned previously and � �0 refers to di�eren-
tiation with respect to r. The solution of Eq. (5) is

u � C1rk � C2rÿk � X2r3

k2 ÿ 9
�k2 6� 9�; �6�

u � D1r3 � D2rÿ3 � �1ÿ 6 logr�
36

X2r3 �k2 � 9�: �7�

Using Eqs. (2) and (3) along with the above displacement equations, the stresses are expressed as follows:
For k2 6� 9,

Nr

A11

� C1�k� m�rkÿ1 ÿ C2�kÿ m�rÿ�k�1� � �3� m�r2X2

k2 ÿ 9
; �8�

Nh

A11

� C1k�k� m�rkÿ1 � C2k�kÿ m�rÿ�k�1� � �k
2 � 3m�r2X2

k2 ÿ 9
�9�

and for k2 � 9,

Nr

A11

� D1�3� m�r2 ÿ D2�3ÿ m�rÿ4 � �mÿ 3ÿ 6�m� 3� logr�r2X2

36
; �10�

Nh

A11

� D1�k2 � 3m�r2 � D2�k2 ÿ 3m�rÿ4 � �k
2 ÿ 3mÿ 6�k2 � 3m� logr�r2X2

36
; �11�

where m � A12=A11 which essentially represents PoissonÕs e�ect.
In the case of a full plate (a=R � 0), the condition u�0� � 0 demands that C2 � D2 � 0 and the stress-free

outer boundary means Nr � 0 at r � 1 thus yielding the following expressions for C1 and D1:

C1 � �3� m�X2

�k� m��9ÿ k2� ; �12�

D1 � �3ÿ m�X2

36�3� m� : �13�

If the plate is ®xed to a rigid shaft of radius a, the boundary conditions are that there is no radial
displacement at r � a=R and that Nr � 0 at r � 1. Under these conditions, the constants C1, C2, D1 and D2

are determined as

C1 �
a
R

ÿ �k�3�mÿ k� ÿ mÿ 3
h i

X2

�k2 ÿ 9� a
R

ÿ �2k�kÿ m� � k� m
h i ; �14�

C2 �
a
R

ÿ �2k�m� 3� ÿ �aR�k�3�m� k�
h i

X2

�k2 ÿ 9� a
R

ÿ �2k�kÿ m� � k� m
h i ; �15�

D1 �
�3ÿ m� a

R

ÿ �6�6 log a
Rÿ 1� � 1

h i
X2

36 a
R

ÿ �6�3ÿ m� � 3� m
h i ; �16�
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D2 �
a
R

ÿ �6 �m� 3� log a
Rÿ 1

� �
X2

6 a
R

ÿ �6�3ÿ m� � 3� m
h i : �17�

It should be noted that no instability is present in the classical results for any value of the rotational pa-
rameter X.

3. Stress redistribution and instability

The actual centrifugal force qx2�r � u� will now be considered. The strain±displacement and constitutive
equations remain unchanged while the equilibrium equation takes the form

dNr

dr
� Nr ÿ Nh

r
� qx2�r � u� � 0: �18�

Following the same steps as in the classical approach, the displacement equilibrium equation is obtained as

r2u00 � ru0 � �X2r2 ÿ k2�u � ÿX2r3: �19�
The solution of Eq. (19) can be obtained in the form of Bessel functions. Two cases must be considered: (a)
k is integer and (b) k is real. For k � integer,

u�r� � c1Jk�Xr� � c2Yk�Xr� � A Jk�Xr�
Z r

r0

z2Yk�Xz�dz
�

ÿ Yk�Xr�
Z r

r0

z2Jk�Xz�dz
�

�20�

and for k � real,

u�r� � d1Jk�Xr� � d2Jÿk�Xr� � B Jk�Xr�
Z r

r0

z2Jÿk�Xz�dz
�

ÿ Jÿk�Xr�
Z r

r0

z2Jk�Xz�dz
�
; �21�

where A � �pX2=2�; B � ÿ�pX2=2sinpk� and Jk, Yk, respectively, are Bessel functions of the ®rst and
second kind. The constants c1, c2, d1 and d2 are to be determined from the appropriate boundary condi-
tions. Using Eqs. (2) and (3) along with Eqs. (20) and (21), the stresses are expressed as follows:

For k � integer,

Nr

A11

� c1

�
� A

Z r

r0

z2Yk�Xz�dz
�

XJ 0k�Xr�
h

� m
r

Jk�Xr�
i

� c2

�
ÿ A

Z r

r0

z2Jk�Xz�dz
�

XY 0k�Xr�
h

� m
r

Yk�Xr�
i
; �22�

Nh

A11

� c1

�
� A

Z r

r0

z2Yk�Xz�dz
�

mXJ 0k�Xr�
�

� k2

r
Jk�Xr�

�
� c2

�
ÿ A

Z r

r0

z2Jk�Xz�dz
�

mXY 0k�Xr�
�

� k2

r
Yk�Xr�

�
�23�

and for k � real,

Nr

A11

� d1

�
� B

Z r

r0

z2Jÿk�Xz�dz
�

XJ 0k�Xr�
h

� m
r

Jk�Xr�
i

� d2

�
ÿ B

Z r

r0

z2Jk�Xz�dz
�

XJ 0ÿk�Xr�
h

� m
r

Jÿk�Xr�
i
; �24�
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Nh

A11

� d1

�
� B

Z r

r0

z2Jÿk�Xz�dz
�

mXJ 0k�Xr�
�

� k2

r
Jk�Xr�

�

� d2

�
ÿ B

Z r

r0

z2Jk�Xz�dz
�

mXJ 0ÿk�Xr�
�

� k2

r
Jÿk�Xr�

�
; �25�

where J 0k�Xr� � 1
2
Jkÿ1�Xr� ÿ 1

2
Jk�1�Xr� and Y 0k�Xr� � 1

2
Ykÿ1�Xr� ÿ 1

2
Yk�1�Xr� (Abromowitz and Stegun, 1972).

For a full plate (r0 � 0) with k � integer, u�0� � 0 demands that c2 � 0, and along the boundary (r � 1)
the stress-free condition Nr�1� � 0 yields

c1 � A
a22

a21

Z 1

0

z2Jk�Xz�dz
�

ÿ
Z 1

0

z2Yk�Xz�dz
�
; �26�

when k � real, u�0� � 0 gives b2 � 0 and Nr�1� � 0 gives

d1 � B
b22

b21

Z 1

0

z2Jk�Xz�dz
�

ÿ
Z 1

0

z2Jÿk�Xz�dz
�
; �27�

where

a21 � XJ 0k�X� � mJk�X�; a22 � XY 0k�X� � mYk�X�; b21 � a21; b22 � XJ 0ÿk�X� � mJÿk�X�:
In the case of a plate ®xed to a rigid shaft (r0 � a=R), for k � integer, applying the conditions u�a=R� � 0
and Nr�1� � 0 yields

c1 � ÿa12f
a11a22 ÿ a12a21

; �28�

c2 � a11f
a11a22 ÿ a12a21

; �29�

and for k � real, the constants are determined as

d1 � ÿb12g
b11b22 ÿ b12b21

; �30�

d2 � b11g
b11b22 ÿ b12b21

; �31�

where

a11 � Jk X
a
R

� �
; a12 � Yk X

a
R

� �
; b11 � a11; b12 � Jÿk X

a
R

� �
;

f � A a22

Z 1

a=R
z2Jk�Xz�dz

 
ÿ a12

Z 1

a=R
z2Yk�Xz�dz

!
;

g � B b22

Z 1

a=R
z2Jk�Xz�dz

 
ÿ b12

Z 1

a=R
z2Jÿk�Xz�dz

!
:

Note that in both cases, at a certain speed, the denominators in the constants given above will go to zero,
thus, resulting in unbounded displacements and stresses. With the constants now fully determined, the dis-
placements and the corresponding stresses are readily calculated using Eqs. (20) and (21) and Eqs. (22)±(25).
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4. Results

Using the stress redistribution expressions the critical rotational parameter at which instability occurs
will now be determined for various cases. There are essentially three parameters a�ecting the critical pa-
rameter Xcr namely, m, k and a=R. Table 1 shows the e�ect of k and a=R on the critical parameter for m � 0:3.
The ratio a=R � 0 corresponds to the full plate. The degree of anisotropy is given by k and k � 1 corre-
sponds to the isotropic case. For the isotropic case, the results given in the present study exactly match
those of Brunelle (1971). As a=R increases, the e�ect of k on the critical rotational parameter decreases. For
high values of a=R, the e�ect of anisotropy is virtually negligible. PoissonÕs e�ect on Xcr is displayed in Table
2. The case for a=R � 0:1 is chosen, and it is clearly noticed that m has minimal e�ect which further decreases
with increasing k. The range of values of m are determined arbitrarily due to the fact that the open interval
�0; 1

2
� for PoissonÕs number in isotropic materials do not necessarily constitute the bounds for m in aniso-

tropic materials.
Since the critical speed is most strongly a�ected by the degree of anisotropy, the parameter k2, which is

the ratio of circumferential sti�ness to radial sti�ness, must be reserved as a design parameter in appli-
cations. Increasing k increases the stability of the rotating disk. A comparison of the stresses determined by
the classical analysis with the redistributed stresses is given in Fig. 1. These stresses are calculated at

Table 1

E�ect of k and a=R on the critical rotational parameter

a=R Xcr

m � 0:3 k � 0:5 k � 1:0 k � 1:5 k � 3:0

0.0 0.7593 1.5788 2.2480 4.0473

0.1 1.6078 2.0879 2.6469 4.3395

0.2 1.8272 2.2039 2.6967 4.3417

0.3 2.1089 2.4043 2.8212 4.3610

0.4 2.4841 2.7135 3.0552 4.4371

0.5 3.0088 3.1834 3.4541 4.6397

0.6 3.7954 3.9237 4.1286 5.0913

0.7 5.1055 5.1944 5.3393 6.0613

0.8 7.7245 7.7795 7.8703 8.3433

0.9 15.579 15.605 15.648 15.875

Table 2

E�ect of k and m on the critical rotational parameter

m Xcr

a=R � 0:1 k � 0:5 k � 1:0 k � 1:5 k � 3:0

0.0 1.3517 1.8793 2.4677 4.2012

0.1 1.4453 1.9537 2.5308 4.2489

0.2 1.5302 2.0231 2.5904 4.2950

0.3 1.6078 2.0879 2.6469 4.3395

0.4 1.6792 2.1488 2.7007 4.3825

0.5 1.7453 2.2060 2.7517 4.4241

0.6 1.8068 2.2599 2.8003 4.4643

0.7 1.8641 2.3109 2.8467 4.5032

0.8 1.9178 2.3591 2.8909 4.5409

0.9 1.9681 2.4047 2.9331 4.5773

1.0 2.0155 2.4481 2.9735 4.6126
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a=R � 0:1 for m � 0:3. The di�erence between the two gets substantially large as the critical rotational
parameter is approached. The stabilizing e�ect of increased sti�ness ratio is once again demonstrated.

5. Conclusions

Stresses in rotating polar-orthotropic disks have been calculated using the classical approach which does
not include the radial displacement in the centrifugal force expression, and no instability has been noted in
the results. Considering the actual centrifugal force with the radial displacement resulted in redistributed
stresses and instability has occurred at a certain critical rotational speed. The results have been obtained as
functions of non-dimensional parameters, namely, the ratio of inner radius to outer radius, the ratio of
circumferential sti�ness to radial sti�ness which gives the degree of anisotropy, and PoissonÕs term. Full
circular plates and plates ®xed to a rigid shaft are considered. Obviously, the full plate possesses the
smallest critical speed while the stability of the plates ®xed to a rigid shaft is increased by increasing the
ratio of inner radius to outer radius. The most considerable e�ect on the stability has been found to be due
to the sti�ness ratio; increasing the circumferential sti�ness with respect to the radial sti�ness contributed an
increase to the stability of the rotating plate. PoissonÕs term has remained to be a minor factor in the
stability analysis. Being restricted by the geometric properties, the designer has the ¯exibility of choosing a
material with a suitable sti�ness ratio.
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